UI Wordmark

ECE 598 NSG - Special Topics in ECE - Deep Learning in Hardware

Campus: Urbana-Champaign

Description:

Subject offerings of new and developing areas of knowledge in electrical and computer engineering intended to augment the existing curriculum. See Class Schedule or departmental course information for topics and prerequisites. Course Information: May be repeated in the same or separate terms if topics vary.

Special Instructions:

This course will present challenges in implementing deep learning algorithms on resource-constrained hardware platforms at the Edge such as wearables, IoTs, autonomous vehicles, and biomedical devices. Fixed-point requirements of deep for deep neural networks and convolutional neural networks including the back-prop based training will be studied. Algorithm-to-architecture mapping techniques will be explored to trade-off energy-latency-accuracy in deep learning digital accelerators and analog in-memory architectures. Fundamentals of learning behavior, fixed-point analysis, architectural energy and delay models will be introduced in just-in-time manner throughout the course. Case studies of hardware (architecture and circuit) realizations of deep learning systems will be presented. Homeworks will include a mix of analysis and programming exercises in Python and Verilog leading up to a term project. Prerequisites: ECE 313 and 385.

Option 1

Number of Required Visit(s): 0

Course Level: Graduate

Credit: 4

Term(s): Fall


Home

Bachelor's Degree

Master's Degree

Doctoral Degree

Certificates

Continuing Education

Search Programs

Search Courses

FAQ

Contact Us


University of Illinois Online
Phone: (866) 633-8465 - Join Us  Facebook
© Copyright 2015 - University of Illinois

Cookie Settings